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Fast numerical method for electromagnetic
scattering by rough layered interfaces:

Propagation-inside-layer expansion method

Nicolas Déchamps, Nicole de Beaucoudrey, Christophe Bourlier, and Serge Toutain

IREENA, Ecole Polytechnique de l’Université de Nantes, Rue Christian Pauc, La Chantrerie, BP 50609,
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Electromagnetic scattering from a stack of two one-dimensional rough surfaces separating homogeneous media
is modeled with a rigorous integral formulation solved by the method of moments. We present an efficient nu-
merical method for computing the field scattered by such rough layers, in reflection as well as in transmission.
We call this method propagation-inside-layer expansion (PILE) due to its straightforward physical interpreta-
tion. To our knowledge, it is the first method able to handle problems for this configuration with a huge number
of unknowns. We study the convergence of this method versus a coupling condition and validate it by compari-
son with results from the literature. © 2006 Optical Society of America

OCIS codes: 290.5880, 290.4210, 280.0280.
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. INTRODUCTION
he study of electromagnetic scattering by layered rough
urfaces has a large number of applications in, for ex-
mple, optics for coated surfaces,1–9 remote sensing for
he monitoring of oil spills,10 and detection of buried in-
erfaces (e.g., in sediments) using ground-penetrating
adar.11

Of particular interest are integral methods to derive
he field scattered by surfaces separating homogeneous
edia. These methods can rigorously lead to knowledge of

he scattered field, which is not the case when using
symptotic methods12–14 such as the Kirchhoff approxi-
ation or the small-perturbation method. Integral meth-

ds aim at obtaining the total field and/or its normal de-
ivative on the surfaces: These surface unknowns are
inked to the incident field by means of integral equa-
ions, and the method of moments (MoM)15,16 transforms
hese integral equations in a linear system.

For the case of a single rough surface, “fast” methods of
esolution of this linear system have been developed in or-
er to reduce the number of operations as well as the
emory storage space.13,14,16 When one considers a stack

f two rough surfaces, the number of unknowns is in-
reased. Consequently, fast methods are of particular in-
erest for this configuration but, to our knowledge, have
ot been developed until now for the two-dimensional
roblem. Hence, the use of integral methods for a stack of
wo surfaces is restricted to surfaces sampled on a coarse
rid, in order to deal with a lower number of
nknowns.17,18 This basic numerical limitation made a
reat number of studies intractable until now.

To overcome this limitation, we propose a fast numeri-
al method,19 which is devoted to efficiently computing
he scattering from a stack of two one-dimensional rough
nterfaces. Due to its straightforward physical interpreta-
ion, we choose to call this approach the propagation-
nside-layer expansion (PILE) method. This paper is orga-
1084-7529/06/020359-11/$15.00 © 2
ized as follows: In Section 2, we recall the integral
quations derived for a stack of two rough interfaces and
he linear system obtained by the MoM. Section 3 de-
cribes the PILE method, which efficiently inverts the lin-
ar system; its validity domain is studied next, as well as
preconditioning technique. In Section 4, we validate this
ew method by comparison with results given in the lit-
rature.

. INTEGRAL FORMULATION FOR A
OUGH LAYER
. Rough Layer and Incident Beam
et us assume that the rough layer is invariant along the

ˆ direction and that the incident wave vector is lying in
he �x̂ , ẑ� plane. Consequently, the problem is two dimen-
ional, and the layer is delimited by two one-dimensional
urfaces: an upper one, S+, defined by the surface equa-
ion z=�+�x�, and a lower one, S−, defined by �−�x� (Fig. 1).
±�x� are assumed to be stochastic, stationary, Gaussian
rocesses, satisfying ��+�=0 and ��−�=−H, where H�0 is
he mean layer thickness; the surface height spectrum
an be of any kind: Gaussian, West–O’Donnell,20 etc. If
he surfaces are not identical, one must pay special atten-
ion to avoid any intersection of them.

The surfaces separate three homogeneous media: the
pper one, �0, considered air; the intermediate one, �1,
lling the layer; and the lower one, �2. �2 will be consid-
red a lossy dielectric or a perfect conductor, and we will
efer to the corresponding configuration, for the sake of
implicity, as a dielectric case or a perfectly conducting
ase.

The random surfaces S± can easily be generated by a
pectral method, widely used in the calculation of wave
cattering.16 If N represents the number of samples for
ach surface, discretized abscissa and heights of the sur-
aces are given by
006 Optical Society of America
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xn = −
L

2
+ �n −

1

2��x, �±�xn�, n = 1, . . . ,N, �1�

here �x=L /N is the sampling step and L is the total
ength of each surface. A point of the plane �x̂ , ẑ� will be
enoted by r=xx̂+zẑ, and a point of S± by rn

±=xnx̂
�±�xn�ẑ.
To avoid edge limitations, we choose the incident field

inc as a Thorsos tapered plane wave.21 Let us denote the
ncident angle as �i, defined with respect to ẑ in the coun-
erclockwise direction, and the tapering parameter as g,
hich has a dimension of length and controls the spatial
xtent of the incident wave. Typically, g is chosen to be
ome fraction of L; we used g=L /6 or g=L /10 in numeri-
al simulations. Furthermore, we consider both TE (or s)
nd TM (or p) polarizations. An ej�t time-harmonic con-
ention is used.

As we consider homogeneous media, we choose the
rame of surface integral methods. Integral equations
ave been established for perfectly conducting17 and lossy
ielectric18,22 lower media. We successively present the di-
lectric (Subsection 2.B) and perfectly conducting (Sub-
ection 2.C) cases.

. Dielectric Case

. Integral Equations
et us define ��j�j=0,1,2 as the total field in each medium
j. The purpose of integral methods is to evaluate the
elds and their first derivatives onto S± and then, by
eans of Huygens’s principle, to deduce the scattered

eld in each medium.
For r located on the rough surfaces, the fields ��j�j=0,1,2

atisfy the following boundary conditions:

	�0�r�	r�S+
= 	�1�r�	r�S+

,


 ��0�r�

�n+



r�S+

=
1

�10

 ��1�r�

�n+



r�S+

, �2a�

	�1�r�	r�S−
= 	�2�r�	r�S−

,


 ��1�r�

�n−



r�S−

=
1

�21

 ��2�r�

�n−



r�S−

, �2b�

here �10=�21=1 in the TE case and �10=	1 /	0, �21
	2 /	1 in the TM case. The upward normal n± to the sur-

ace S is defined as

ig. 1. Geometry of the problem and contour integration paths.
±

n± =
− �±�x̂ + ẑ

�1 + ��±��2
,

here �±� =��±/�x.
Let us consider three contour paths of integration, C0,

1, and C2, represented in Fig. 1. Applying Green’s theo-
em under the assumption that the fields �j and their nor-
al derivatives ��j /�n± on both interfaces are negligible

t the edges, we obtain four coupled equations. When the
oundary conditions (2) are introduced, these four equa-
ions, linking the incident field �inc and the total fields �0
nd �1 on the rough surfaces S+ and S−, become

�3a�

�3b�

�3c�

�3d�
n these expressions, �S− ds is the principal value integral.
he Green functions of regions �j are expressed by

gj�r�,r� =
i

4
H0

�1��kjr − r��, �4�

here k0 is the wave number in free space and �k1,2� de-
ote the wave numbers in the inner and lower media.

0
�1��·� is the zeroth-order Hankel function of the first
ind. The meaning of symbols A to H will be given below.
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. Discretization by the Method of Moments
e apply the MoM with point matching and pulse basis

unctions.15 From boundary conditions (2) and the set of
ntegral equations (3), we obtain a linear system of the
orm Z ·X=b, where the unknown vector X is equal to

X4N
1 = �X+

X−
� , �5�

ith X+ and X− containing the unknown fields and their
ormal derivatives on the upper and lower surfaces, re-
pectively. They have the following expressions:

X+
t = ��0�r1

+� ¯ �0�rN
+ �

��0�r1
+�

�n+
¯

��0�rN
+ �

�n+
� , �6�

X−
t = ��1�r1

−� ¯ �1�rN
− �

��1�r1
−�

�n−
¯

��1�rN
− �

�n−
� , �7�

here Xt stands for the transpose of X.
The source term b contains the information about the

ncident field:

�8�

he impedance matrix has the form

Z4N
4N = �ZU CU

CL ZL� , �9�

here ZU, ZL, CU, and CL are square matrices of size
N
2N:

Z2N
2N
U = �A+ B+

C+ �10D+�, Z2N
2N
L = �A− B−

C− �21D−� ,

�10�

C2N
2N
U = �0 0

E F�, C2N
2N
L = �G �10H

0 0 � . �11�

he superscript U stands for “upper,” and L for “lower.”
U exactly corresponds to the impedance matrix of a
ingle-interface problem,16 where the interface considered
s the upper one �S+�. Likewise, ZL is the impedance ma-
rix of the single surface S−. Moreover, matrices CU and

L can be seen as coupling matrices between the two in-
erfaces S+ and S−. Actually, according to integral equa-
ion (3b), CU propagates information from the lower inter-
ace toward the upper one �S−→S+�. The same remark
olds for matrix CL: It is the coupling matrix from the up-
er surface toward the lower one �S+→S−�.
A±, B±, C±, D±, E, F, G, and H are derived by discretiz-

ng Eqs. (3) and are given in Appendix A. Each of these 16
locks of Z has a size of N
N, the four blocks in Eq. (9)
ave a size of 2N
2N, and so the size of Z is 4N
4N,
ith 4�N
N� zero elements contained in the CU and CL

atrices.
. Perfectly Conducting Case
hen the lower medium is perfectly conducting, in ex-

ression (9) of the impedance matrix Z, ZU is obviously
dentical to that in the dielectric case. Differences arise in
L, which is reduced to an N
N matrix, and from the
oupling matrices, which are no longer square. For TE po-
arization, we get

ZN
N
L = B−, C2N
N

U = �0

F�, CN
2N
L = �G �10H�,

�12�

nd for TM polarization, we obtain

ZN
N
L = A−, C2N
N

U = �0

E�, CN
2N
L = �G �10H�.

�13�

mpedance matrice Z is of size 3N
3N, and the un-
nowns are ��0 ,��0 /�n+,��1 /�n−� in the TE case and
�0 ,��0 /�n+,�1� in the TM case.

. Scattered Field and Bistatic Cross Section
nce the equation Z ·X=b is solved for X, we can derive,
sing Huygens’s principle,16 the scattered fields ��j�j=0,1,2

n the media �j:

�0 in the upper medium �0, from the values X+
��0 ,��0 /�n+� on the upper surface S+;
�2 in the lower medium �2, from X−;
�1 in the inner medium �1, from both X+ and X−, by

sing the following expression, valid for r���1:

�sc�r�� =�
S+

ds+��0�r+�
�g1�r+,r��

�n+ − g1�r+,r��
��0�r+�

�n+ �
−�

S−
ds−��1�r−�

�g1�r−,r��

�n− − g1�r−,r��
��1�r−�

�n− � .

�14�

inally, the bistatic cross section (BCS), also known as the
ean differential reflection coefficient, can be derived in

he far field.16,17,23

. PROPAGATION-INSIDE-LAYER
XPANSION: FAST METHOD FOR A ROUGH
AYER
ntil now, no efficient method has been available to
chieve a fast resolution of the equation Z ·X=b, unlike
or the single-interface problem. Hence, a direct inversion
f Z has to be used, with limitation to a maximal number
f samples on each surface, typically around N�800 for a
ersonal computer (2 GHz processor, 1 Gbit RAM). This
llustrates the particular interest in developing efficient
nd fast numerical methods, requiring low memory space,
or the resolution of Z ·X=b in the case of a rough layer.
ndeed, our method19 takes advantage of the block parti-
ioning of the impedance matrix (9).
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. Efficient Algorithm
he algorithm is presented here in the general dielectric
ase. Let us assume that we already have the inverse ma-
rix Z−1; we can partition it into four blocks:

Z−1 = �T U

V W� , �15�

here the square matrices T, U, V, and W are of size
N
2N and can be expressed24 with the four blocks of Z
iven in Eq. (9) as follows:

T = �ZU − CU · �ZL�−1 · CL�−1, �16a�

U = − T · CU · �ZL�−1, �16b�

V = − �ZL�−1 · CL · T, �16c�

W = �ZL�−1 − �ZL�−1 · CL · T · CU · �ZL�−1.

�16d�

rom Eq. (15), the unknowns X are given by

�X+

X−
� = Z−1�b+

b−
� = �T · b+ + U · b−

V · b+ + W · b−
� . �17�

quation (17) splits up the 4N
4N linear system into
wo smaller 2N
2N systems, but it is not yet an efficient
nough way to solve the problem.

. Evaluation of the Field X+ on the Upper Surface
ith the aim of solving Z ·X=b in an efficient way, we

ote that we need only the unknown values X+ to compute
he scattered field in the upper medium �0, above S+.
onsequently, in Eq. (17), we need only to solve X+
T ·b++U ·b−. And, since b−=0 in Eq. (8), it is equivalent

o solve, by using Eq. (16a),

X+ = T · b+ = �ZU − CU · �ZL�−1 · CL�−1 · b+. �18�

he above expression can be cast into the form

X+ = �I − �ZU�−1 · CU · �ZL�−1 · CL�−1 · �ZU�−1 · b+

= �I − Mc�−1 · �ZU�−1 · b+, �19�

here a characteristic matrix of the layer appears, which
e name Mc:

Mc = �ZU�−1 · CU · �ZL�−1 · CL. �20�

f we define the norm  · sr of a complex matrix by its spec-
ral radius, i.e., the highest modulus of its eigenvalues,
e can expand the term �I−Mc�−1 in Eq. (19), provided

hat

Mcsr = �ZU�−1 · CU · �ZL�−1 · CLsr � 1 �21�

n the same way as the scalar expansion 1/ �1−a��1+a
a2+a3+¯ if 	a	�1. We will investigate in Subsection
.D the validity domain of this condition, but we can al-
eady say that it is fulfilled for most configurations met in
he literature.

Hence, when relation (21) is satisfied, expression (19) of
he unknowns on the surface S+ can be approximated by
X+
�P� = ��

p=0

P

Mc
p� · �ZU�−1 · b+ = �

p=0

P

Y+
�p�, �22�

here

Y+
�0� = �ZU�−1 · b+, Y+

�p� = Mc · Y+
�p−1� for p � 0.

�23�

ccording to the expression of Mc given in Eq. (20), Eq.
22) has a clear physical interpretation (Fig. 2): The total
nknowns on the upper interface are the sum of the con-
ributions Y+

�p� corresponding to successive iterations p. In
he zeroth-order term, �ZU�−1 accounts for the local inter-
ctions on the upper interface, so Y+

�0� corresponds to the
ontribution of the direct reflection on the upper surface,
ithout entering inside the layer. In the first-order term,
iven by Y+

�1�=Mc ·Y+
�0�, CL propagates the resulting upper

eld information, Y+
�0�, toward the lower interface, �ZL�−1

ccounts for the local interactions on the lower interface,
nd CU repropagates the resulting contribution toward
he upper interface; finally, �ZU�−1 updates the field val-
es on the upper interface. And so on for the subsequent
erms Y+

�p� for p�1. The total field X+
�P� on the upper in-

erface corresponds to the multiple scattering of the field
nside the layer. Furthermore, sum (22) converges to the
xact and rigorous solution if relation (21) is fulfilled, be-
ause of the properties of the series expansion.

Taking into consideration this physical interpretation,
e call our method PILE, for propagation-inside-layer ex-
ansion.

. Evaluation of the Field X− on the Lower Surface
he field X− on the lower surface is computed from Eq.

17), with b−=0, by using Eqs. (16c) and (18):

X− = V · b+ = − ��ZL�−1 · CL� · T · b+ = − ��ZL�−1 · CL� · X+.

�24�

quation (24) can also be interpreted with the use of Fig.
: From solution X+, obtained by exact inversion or itera-
ively (Subsection 3.A.1), CL propagates the information
oward the lower interface, then �ZL�−1 accounts for the
ocal interactions on this lower interface.

. Use of Fast Methods Developed for Single Surfaces
he advantage of the PILE method [Eq. (22)] is that the
atrix–vector products �ZU�−1·v and �ZL�−1·v (where v is

ig. 2. Physical interpretation of ��ZU�−1 ·CU · �ZL�−1

·CL�p · �ZU�−1.
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vector) can be calculated by fast numerical methods
hat already exist for a single rough interface.

Direct methods such as LU decomposition require
�N3 /3� operations. As N increases, the computing cost
ecomes prohibitive. This has led to the development of
terative schemes that compute the surface unknowns in
everal steps. Three of the most extensively used ap-
roaches are the forward/backward (FB) method25–28

similar to the method of ordered multiple interactions29),
he banded matrix iterative approach/canonical grid
BMIA/CAG),23,30,31 and the fast multipole method
FMM).32–34 Although any of these methods can be
qually implemented for matrix inversion in the PILE
ethod, we choose to use the BMIA/CAG because it is

asier to implement than the FMM multilevel method
nd is more efficient than the existing version of the FB
ethod for the dielectric case.28

In the BMIA/CAG method, the interaction between two
oints on the surface is split into near (strong) and far
weak) interactions. Near interactions are computed with
he exact Green’s function. In contrast, far interactions
re computed by a Fourier transform through a Taylor se-
ies expansion of Green’s function upon a flat surface �z
0�. Therefore, the BMIA/CAG method is valid only for
urfaces of up to a moderate roughness. A multilevel ver-
ion of the BMIA/CAG has to be implemented for higher
oughness; an alternative algorithm is the multigrid
ethod.35

. Complexity
he zeroth-order term Y+

�0�= �ZU�−1·b+ is obtained by ap-
lying a fast method (Subsection 3.B). With the use of the
MIA/CAG, this step has a complexity of O�2N log 2N�,
ince �ZU�−1 is of size 2N
2N. The complexity per itera-
ion of the terms Y+

�p�, p�0, is given below, with
=Y+

�p−1�:

�25�

perations (a) and (c) are matrix–vector multiplications:
heir complexity is less than O„�2N�2

… because the CU

nd CL matrices are mid empty. Operations (b) and (d)
re fast iterative inversions, computed with the BMIA/
AG or with any other fast method. In conclusion, this
ethod is of order O„4PN2+ �1+2P�2N log 2N…, where P

s the number of iterations, i.e., the truncation order in
eries expansion (22). For N�1, we get O�4PN2�. As we
an see from the numerical results, P is generally less
han 10, so this method is much faster than the direct LU
nversion, of order O„�4N /3�3

…. Furthermore, the PILE
ethod is faster than a conjugate gradient scheme, whose

omplexity is O�Miter12N2�, where Miter is the number of
terations and 12N2 is the number of nonzero coefficients
f the impedance matrix.
In the same way, for the perfectly conducting case, the
omplexity of the PILE method at order P is O„3PN2

N��3P+2�log N+2�P+1�log 2�…. When N�1, this leads
o a complexity of O�3PN2�.

. Validity Domain
he convergence of the PILE method relies on condition

21) on Mc, involving the four submatrices of the imped-
nce matrix of the layer in Eq. (9), which depend on the
arameters of the system: statistics of the interfaces,
ean thickness of the layer, and permittivity of each me-

ium. Nevertheless, it is worth noting that the norm is in-
ependent of the incident angle. We study hereafter the
ollowing configurations: (a) two plane interfaces, (b) one
ough interface above or under a plane interface, and (c)
wo rough interfaces. In each case, a typical relative di-
lectric permittivity of the layer is chosen, 	r1=2.5
0.01i, as in Refs. 22 and 36–39.

. Influence of the Layer Thickness: Case (a)
or a relative dielectric permittivity of lower medium �2
hosen as 	r2=8, the Green’s function g2 in �2 varies
aster than the Green’s function g0 in free space �0. Actu-
lly, the number of sampling points needed in �2 should
e �8�3 times higher than that in free space. As ten sam-
ling points per wavelength are usually taken in free
pace, we choose therefore 30 sampling points per wave-
ength for each interface, so �x�0.03. We plot in Fig. 3
he norm Mcsr versus the thickness H of the layer, for
everal values L /= �6,9,12,15� of the total length of
ach interface, for TE (top) and TM (bottom) polariza-
ions. The lower limit value of the thickness, H=0.03, is
qual to �x. We note that the norm is higher in TE polar-
zation than in TM polarization. In addition, the norm in-
reases when the thickness decreases, as a consequence of
higher coupling between the two interfaces. Neverthe-

ess, the method converges for both polarizations, for
hatever thickness greater than �x, for the considered

engths. In addition, for a given thickness, the norm in-
reases if the length L increases. Considering next the
erfectly conducting case, we plot in Fig. 4 the norm ver-
us the thickness H, with the same parameters as those
n Fig. 3, except for 	r2= i�. Results are quite similar for
oth polarizations, unlike for the dielectric case. But
bove all, it is worth noting that the norm is higher than
hat for the dielectric case; this implies that the PILE
ethod converges more quickly for the dielectric case

han for the perfectly conducting one.

. Influence of the Roughness: Cases (b) and (c)
et us consider rough interfaces with both Gaussian
eight distribution and correlation. We first study the
ase of one rough interface above or under a plane inter-
ace [case (b)] for the dielectric case.

We plot in Fig. 5 the norm Mcsr versus the height rms
h of the rough interface. For each interface, the total

ength is L=12, the sampling rate is �x=0.03, and the
umber of samples is N=400; the correlation length is
qual to Lc=. The slope rms is then given by �p
�2�h /Lc=�2�h /. The mean thickness is H=1.5. Other
arameters, such as dielectric constants, are identical to
hose in the plane case (Fig. 3). The upper limit for height
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ms is chosen as �h,max=0.3=H /5, so that the rough sur-
ace does not intercept the plane surface. We can note in
ig. 5 (i.e., for �h�0.3 and �p��2
0.3�0.42) that the
ifference between the norm in the case of a single rough
urface, above or under a plane one, and the norm in the
lane case ��h=0� is less than ±0.05. In other words, a
oderate roughness does not modify drastically the norm

f the characteristic matrix of the layer.
When both surfaces are rough [case (c)], several cases

rise: Surfaces can be uncorrelated between themselves,
orrelated, or identical. Further investigations, not shown
ere, point out that the norm is not modified in a signifi-
ant way (same range of ±0.05), whatever the correlation
etween surfaces and the height rms. This behavior of the
orm is illustrated, for example, in Fig. 6, where we plot
he norm versus �h for the case of identical or uncorre-
ated rough surfaces. In this example, we choose an iden-
ical height rms for both surfaces, �h=�h

+=�h
−. Other pa-

ameters are the same as those in Fig. 5 (Lc=, L=12,
x=0.03, N=400, and H=1.5).
For the perfectly conducting case also, results, not

hown here, confirm that the roughness has a similar low
nfluence on the norm.

. Influence of the Total Length L
f we consider moderate roughness up to �h�0.3, the
orm of the characteristic matrix is mostly influenced by

ig. 5. Norm Mcsr versus height rms �h for one rough surface
nd one plane surface: upper rough (solid curves) or lower rough
dashed curves), dielectric case for both polarizations, H=1.5,
=12, �x=0.03, 	r0=1, 	r1=2.5+0.01i, and 	r2=8.

ig. 6. Norm Mcsr versus height rms �h for both rough sur-
aces: identical surfaces (solid curves) or uncorrelated surfaces
dashed curves), dielectric case for both polarizations, H=1.5,
=12, �x=0.03, 	 =1, 	 =2.5+0.01i, and 	 =8.
ig. 3. Norm Mcsr versus thickness H for the dielectric (DI)
ase: TE (top) and TM (bottom) polarizations, two plane surfaces,
ig. 4. Norm Mcsr versus thickness H for the perfectly con-
ucting (PC) case: TE (top) and TM (bottom) polarizations, two
lane surfaces, �x=0.03, 	 =1, 	 =2.5+0.01i, and 	 = i�.
 r0 r1 r2
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he total length L of the surfaces and the mean thickness
of the layer. In Figs. 3 and 4, we plotted the norm ver-

us the thickness H for a given L; let us consider now
Fig. 7) the influence of the total length L on the norm for
given thickness H. We study how the PILE method con-

erges, even for a small thickness �H=0.3�. Figure 7 il-
ustrates results for TE polarization only, the TM case be-
ng very similar. The maximal value L=30 corresponds
o the maximal size that we can solve by direct inversion
n our computer (N=1000 sampling points for each sur-
ace).

Figures 3, 4, and 7 show that the norm is higher for the
erfectly conducting case than for the dielectric case. But
he relevant point is that the increase of the norm is slow-
ng down for increasing values of L. Hence, we can expect
hat the norm will be less than unity, i.e., the PILE
ethod will converge, for L values up to 200 in the di-

lectric case.

. Preconditioning
way to improve and, consequently, to accelerate the con-

ergence of the PILE method is to precondition the char-
cteristic matrix of the layer, Mc, by reducing its norm
21). Another point is that errors over successive iterates

+
�p� propagate by applying recursively Mc; hence, a reduc-

ion of its norm can reduce the final error of the PILE
ethod.

ig. 7. Norm Mcsr versus total length L for perfectly conduct-
ng and dielectric cases: TE polarization, H=0.3 and �x=0.03
or both plane surfaces.

ig. 8. Influence of preconditioning: norm Mcsr versus total
ength L (squares) and norm �I−M0�−1�Mc−M0�sr with b=51
triangles), for the perfectly conducting case and TE polarization
or both plane surfaces.
In Eq. (19), we intend to expand �I−Mc�−1 in a series
ore quickly convergent than I+Mc+Mc

2+Mc
3+¯. For

his purpose, let us suppose that a matrix M0 exists,
hich is close to Mc and such that �I−M0�−1 is easier to

nvert than �I−Mc�−1, i.e., with fewer operations. Then

�I − Mc�−1 = �I − M0 − �Mc − M0��−1

= ��I − M0��I − �I − M0�−1�Mc − M0���−1

= �I − �I − M0�−1�Mc − M0��−1�I − M0�−1.

�26�

he expression �I− �I−M0�−1�Mc−M0��−1 can be expanded
n a series as in Eq. (22) if

�I − M0�−1�Mc − M0�sr � 1. �27�

t is interesting to note that an appropriate choice of M0
ay lead to

�I − M0�−1�Mc − M0�sr � Mcsr � 1. �28�

he efficiency of preconditioning relies on the choice of
0. More precisely, we search for a matrix M0 that has

igenvalues “close” to those of Mc and that is easy to in-
ert. Hence, we choose M0= �ZB

U�−1·CB
U · �ZB

L�−1·CB
L, where

he subscript B stands for the corresponding banded ma-
rices of four matrices of Mc, given in Eqs. (10) and (11).
hese banded block matrices have a size of N
N and
qual band width b. Therefore, M0 is also a banded ma-
rix, and we can then proceed to the approximate compu-
ation of �I−M0�−1 by incomplete LU matrix
actorization,38 which is a low-cost operation.

Finally, the preconditioned PILE method has a similar
xpression to Eq. (22):

X+
�P� =��

p=0

P

��I − M0�−1�Mc − M0��p��I − M0�−1 · �ZU�−1 · b+.

�29�

igure 8 shows a comparison of the norm of the charac-
eristic matrix with and without preconditioning. We con-
ider TE polarization, both plane surfaces, and a perfectly
onducting lower medium. The nonpreconditioned results
re those of Fig. 7. For the preconditioning, we choose a
andwidth of b=51 coefficients, according to studies car-
ied out in Ref. 19. Such a choice for b induces at the same
ime a low norm of the preconditioned matrix and a low
andwidth, i.e., a low-cost LUINC decomposition. We can
ote that preconditioning appreciably reduces the norm
or this configuration: For instance, with a total length
=30, Mcsr�0.92 whereas �I−M0�−1�Mc−M0�sr
0.57.

. VALIDATION OF THE PROPAGATION-
NSIDE-LAYER EXPANSION METHOD
he PILE method is compared with two results from the

iterature.22,39

. Sand Layer on a Granite Surface
s a first example, we compare results obtained by the
ILE method and by another rigorous integral method,22

hich was first applied to a single dielectric rough
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urface.40 For a stack of two rough surfaces, both the
ILE method and this alternative integral method allow
ne to deal with a reduced number of unknowns (2N in-
tead of 4N for the dielectric case and 3N for the perfectly
onducting case). However, the main difference is that the
mpedance matrix of Ref. 22 is arranged in a compact
orm, inducing a more complicated formulation of the ker-
el of the operator. Hence, the fill-in of the impedance ma-
rix is very time-consuming, and, furthermore, the com-
licated formulation makes it more difficult to develop
ast methods of resolution. In addition, Saillard and
oso22 use the beam simulation method,41 with incident
aussian waves, whereas we use the Thorsos tapered
aves.21

First we study the configuration (Fig. 9 of Ref. 22) mod-
ling a flat-top sand layer superimposed on a rough gran-
te surface. This configuration deals with two surfaces of
ery different roughnesses: The upper, air–sand interface
ulfills the conditions of application of the small-
erturbation method (height rms �h

+=0.01, slope rms

p
+=0.014), whereas the lower, sand–granite interface ful-
lls the Kirchhoff approximation (�h

−=0.35, �p
+=0.49).

he two surfaces are assumed to be uncorrelated between
hemselves.

We choose a Thorsos incident tapered wave with a ta-
ering parameter g=L /6�11.7, where the total length

ig. 9. rms error for different orders P of the PILE method. The
ame parameters are used as those of Fig. 9 in Ref. 22: 	r0=1,
r1=2.5+0.01i, and 	r2=8. Parameters of rough surfaces are L
70, �x=0.03, �h

+=0.01, �p
+=0.014, �h

−=0.35, �p
+=0.49, and

=1.5, and TE polarization is used. Parameters of the Thorsos
apered incident wave are �i=30° and g=L /6�11.7.

ig. 10. Bistatic cross section in TE polarization. The dashed
urve is the result of Fig. 9 in Ref. 22, and the solid curve repre-
ents the PILE method at order 5.
s L=70. The other parameters are incident angle �i
30°, 	r0=1, 	r1=2.5+0.01i, 	r2=8, mean thickness H
1.5, and N=2300 sampling points for each interface.
he scattering patterns are averaged over 300 realiza-

ions by means of a Monte Carlo procedure.
To quantify the convergence of the PILE method for

his configuration, we realize an exact LU inversion of the
mpedance matrix with expressions (16). Next we com-
ute the bistatic cross section (BCS) rms error of the
ILE method at order P versus the exact inversion. In
ig. 9 of this paper, this rms error decreases rapidly as

he order of the PILE method increases: A rms error of 1%
s obtained at order 2, and 0.01% is reached at order 5. In
ig. 10, we plot the BCS in a linear scale for TE polariza-

ion; reference results are those given in Ref. 22, and the

ig. 11. Bistatic cross section in TE (top) and TM (bottom) po-
arizations. The dashed curves are the result of Fig. 11 in Ref. 22,
nd the solid curves represent the PILE method at order 5.

ig. 12. Incoherent bistatic cross section in TE polarization. The
ashed curve is the result of Fig. 3 in Ref. 39, and the solid curve
epresents the PILE method at order 15.
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ILE results are computed up to order 5. According to
ig. 10, results of both rigorous integral methods are in
ood agreement.

Second, we study the configuration of Fig. 11 of Ref. 22.
he parameters are the same as those in Fig. 10, except
hat �i=0° and the upper surface is now identical to the
ower one (�h

±=0.35, �p
±=0.49). Results are plotted in Fig.

1 of this paper for both polarizations; the BCSs are in
ood agreement, except for the normal scattering direc-
ion. These differences can be explained by the different
hoices of incident beams.

. Layer with Rough Lower Interface of the
est–O’Donnell Spectrum
e now focus on the configuration in Fig. 3 of Ref. 39. The

ncident Thorsos beam (=633 nm, g=L /10=16, with L
160) is normally incident ��i=0° �. The upper surface is
plane, whereas the lower one is characterized by a

aussian surface height distribution ��h
−=30 nm

0.047� and by a West–O’Donnell power spectrum,20 de-
ned by the parameters klow=0.82k0 and kup=1.97k0,
here k0 is the wave number in air. The relative dielectric
ermittivity of the layer is 	r1=2.69+0.01i, and the lower
edium is assumed to be perfectly conducting. The mean

hickness of the layer is H=500 nm�0.79.
To derive the scattered field, Simonsen and
aradudin39 use an asymptotic model, based on reduced
ayleigh equations, and they average the incoherent BCS
ith a Monte Carlo procedure.
Figure 12 shows the incoherent BCS provided by this

symptotic method, denoted as the reference method, and
y our rigorous PILE method at order 15. We plot here
nly results for TE polarization, the TM ones being simi-
ar. We apply the MoM with N=3200 sampling points, so
e deal with 9600 unknowns. Our results (solid curve),
veraged over 300 surface realizations, are in very good
greement with reference ones (dashed curve), resulting
rom 3000 realizations.

Some physical comments can be made about the inco-
erent BCS. First, as the lower surface is of the West–
’Donnell kind, single-scattering processes contribute to

he BCS only in directions �s such that 	�s	��s,min, where
k0 sin �s,min	=klow. We find39 that �s,min�55.1°. This phe-
omenon produces an abrupt increase of the BCS for

ig. 13. Comparison of the modulus of the field inside the layer
s those in Fig. 12.
ngles 	�s	�55° in Fig. 12. Second, in the absence of
oughness and absorption, the layer can support guided
aves: In TE polarization, only two modes exist, with
ave numbers q1=1.24k0 and q2=1.55k0.36 The beat
ielded by these two close guided modes creates36 two sat-
llite peaks in the BCS for angles ��1,2�

± such as sin ��1,2�
±

−sin �i± �1/k0��q1−q2�. The theoretical value ��1,2�
±

±17.7° is in good agreement with observations from
ig. 12.
It is interesting to note that parameters klow and kup of

he West–O’Donnell lower surface satisfy klow�q1�q2
kup and, therefore, permit a strong excitation of guided
odes inside the layer.
Furthermore, the PILE method permits the enlighten-
ent of physical phenomena inside the layer. From solu-

ions X+
�P� and X−

�P� calculated on both surfaces [Eqs. (14),
22), and (24)], we can calculate the scattered field inside
he layer (Subsection 2.D). Figure 13 presents the modu-
us of this scattered field, obtained from the solutions at
rders P= �3,7,15�. This figure confirms that the different
rders of the PILE method take into account the succes-
ive multiple reflections inside the layer. The beat yielded
y the two close guided modes, with wave numbers q1 and
2, is clearly seen, particularly in the solution of order 15.
hese guided modes induce a slow decay of the field and,
onsequently, a slower convergence of the PILE method
15 orders) for this later configuration than in Subsection
.A (only 5 orders). Nevertheless, if we apply the precon-
itioned formulation given by Eq. (29), the number of it-
rations required to achieve the same precision drops
rom 15 to 8.

. CPU Requirements
e used N=2300 sampling points (9200 unknowns) for

he configuration of Figs. 10 and 11 and N=3200 sam-
ling points (9600 unknowns) for Fig. 12. The size of the
mpedance matrix Z of the layer is then about 1.5 Gbits.
t is worth noting that, even for such a high number of
nknowns, calculations are tractable with the PILE
ethod on a standard personal computer (2 GHz proces-

or, 1 Gbit RAM) with MATLAB; the typical CPU time for
his number of samples is about

8 min per realization at order 5 (Figs. 10 and 11),
30 min per realization at order 15 (Fig. 12).

ferent orders of the PILE method. The parameters are the same
for dif
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Moreover, we cannot provide comparisons with the LU
ethod of inversion, because it is impossible to carry out

alculations with such a big impedance matrix.

. CONCLUSION
n this paper, we have considered integral methods to
olve the problem of electromagnetic scattering by one-
imensional rough layers. The integral equations and the
orresponding linear system have been introduced, as
ell as physical insights into the blocks of the impedance
atrix. Although these equations have been known for al-
ost 15 years,17 no efficient method of resolution had

een developed until now.
We have presented herein such a fast method to study

he electromagnetic scattering by a one-dimensional
ough layer; to our knowledge, the propagation-inside-
ayer expansion (PILE) method is the first efficient

ethod devoted to this configuration. Its main interest is
hat it is rigorous, with a simple formulation and with a
traightforward physical interpretation. Actually, this
ast property relies on the fact that each block of the im-
edance matrix is linked to a particular and quasi-
ndependent physical process occurring during the

ultiple-scattering process inside the layer: Local scatter-
ng on each interface and both upward and downward
oupling. By the way, this ensures that, in its validity do-
ain, the method converges fast (commonly in 5–10 itera-

ions), even without preconditioning.
Furthermore, the PILE method allows one to use any

ast method developed for a single interface. The BMIA/
AG method has been implemented in the present case,
ut any other method, such as the FB method or FMM,
ould be used instead.

Another advantage is that it is the first method able to
eal with problems with a huge number of unknowns, as
or instance those involving high incident angles or
uided waves. Finally, the quite large validity domain of
he PILE method makes it able to handle most of the con-
gurations studied in the literature and allows us to
tudy new ones, in particular without restrictions to
mall roughness. The only limitation is the low conver-
ence of the method when dealing with very thin layers.

Further investigations could be directed toward imple-
enting the PILE method to the case of a target located

elow a rough surface42; indeed, the equations in this case
re very similar to those of the rough layer case.

PPENDIX A: IMPEDANCE MATRIX
OEFFICIENTS
or the dielectric case, the matrices A+, B+, C+, D+, E, F,
, and H of the impedance matrix Z have the following

xpressions:

mn
+ =�

−
i�xk0

4

H1
�1��k0rn

+ − rm
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rn
+ − rm
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here rn
±−rm

± =��xn−xm�2− ��±�xn�−�±�xm��2,

n
±=�1+ ��±��xn��2, and ��0.5772 is Euler’s constant.
A−, B−, C−, and D− are very similar to A+, B+, C+, and

+, respectively, where r�m,n�
+ is replaced by r�m,n�

− , �n
+ by

n
−, �+ by �−, k0 by k1, and k1 by k2. These expressions can
lso be used in the perfectly conducting case (Subsection
.C).
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antes.fr, serge.toutain@univ-nantes.fr.
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