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Electromagnetic scattering from a stack of two one-dimensional rough surfaces separating homogeneous media
is modeled with a rigorous integral formulation solved by the method of moments. We present an efficient nu-
merical method for computing the field scattered by such rough layers, in reflection as well as in transmission.
We call this method propagation-inside-layer expansion (PILE) due to its straightforward physical interpreta-
tion. To our knowledge, it is the first method able to handle problems for this configuration with a huge number
of unknowns. We study the convergence of this method versus a coupling condition and validate it by compari-
son with results from the literature. © 2006 Optical Society of America
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1. INTRODUCTION

The study of electromagnetic scattering by layered rough
surfaces has a large number of applications in, for ex-
ample, optics for coated surfaces,’™ remote sensing for
the monitoring of oil spills,10 and detection of buried in-
terfaces (e.g., in sediments) using ground-penetrating
radar.!

Of particular interest are integral methods to derive
the field scattered by surfaces separating homogeneous
media. These methods can rigorously lead to knowledge of
the scattered field, which is not the case when using
asymptotic methods'®* such as the Kirchhoff approxi-
mation or the small-perturbation method. Integral meth-
ods aim at obtaining the total field and/or its normal de-
rivative on the surfaces: These surface unknowns are
linked to the incident field by means of integral equa-
tions, and the method of moments (MoM)'*1® transforms
these integral equations in a linear system.

For the case of a single rough surface, “fast” methods of
resolution of this linear system have been developed in or-
der to reduce the number of operations as well as the
memory storage space.l?”léi’16 When one considers a stack
of two rough surfaces, the number of unknowns is in-
creased. Consequently, fast methods are of particular in-
terest for this configuration but, to our knowledge, have
not been developed until now for the two-dimensional
problem. Hence, the use of integral methods for a stack of
two surfaces is restricted to surfaces sampled on a coarse
grid, in order to deal with a lower number of
unknowns.!”!® This basic numerical limitation made a
great number of studies intractable until now.

To overcome this limitation, we propose a fast numeri-
cal method,* which is devoted to efficiently computing
the scattering from a stack of two one-dimensional rough
interfaces. Due to its straightforward physical interpreta-
tion, we choose to call this approach the propagation-
inside-layer expansion (PILE) method. This paper is orga-
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nized as follows: In Section 2, we recall the integral
equations derived for a stack of two rough interfaces and
the linear system obtained by the MoM. Section 3 de-
scribes the PILE method, which efficiently inverts the lin-
ear system; its validity domain is studied next, as well as
a preconditioning technique. In Section 4, we validate this
new method by comparison with results given in the lit-
erature.

2. INTEGRAL FORMULATION FOR A
ROUGH LAYER

A. Rough Layer and Incident Beam

Let us assume that the rough layer is invariant along the
¥ direction and that the incident wave vector is lying in
the (X,z) plane. Consequently, the problem is two dimen-
sional, and the layer is delimited by two one-dimensional
surfaces: an upper one, S*, defined by the surface equa-
tion z={%(x), and a lower one, S~, defined by {~(x) (Fig. 1).
*(x) are assumed to be stochastic, stationary, Gaussian
processes, satisfying ({*)=0 and ({")=—H, where H>0 is
the mean layer thickness; the surface height spectrum
can be of any kind: Gaussian, West—O'Donnell,? ete. If
the surfaces are not identical, one must pay special atten-
tion to avoid any intersection of them.

The surfaces separate three homogeneous media: the
upper one, (), considered air; the intermediate one, O,
filling the layer; and the lower one, (5. )9 will be consid-
ered a lossy dielectric or a perfect conductor, and we will
refer to the corresponding configuration, for the sake of
simplicity, as a dielectric case or a perfectly conducting
case.

The random surfaces S* can easily be generated by a
spectral method, widely used in the calculation of wave
scattering.16 If N represents the number of samples for
each surface, discretized abscissa and heights of the sur-
faces are given by
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Fig. 1. Geometry of the problem and contour integration paths.

L 1
Bp=-gt\n-g Ax,  {*(x,), n=1,...,N, (1)

where Ax=L/N is the sampling step and L is the total
length of each surface. A point of the plane (%,z) will be
denoted by r=xX+zz, and a point of S* by r,=x,%
+{*(x,)2.

To avoid edge limitations, we choose the incident field
Yine as a Thorsos tapered plane wave.?! Let us denote the
incident angle as 6;, defined with respect to z in the coun-
terclockwise direction, and the tapering parameter as g,
which has a dimension of length and controls the spatial
extent of the incident wave. Typically, g is chosen to be
some fraction of L; we used g=L/6 or g=L/10 in numeri-
cal simulations. Furthermore, we consider both TE (or s)
and TM (or p) polarizations. An &¢/** time-harmonic con-
vention is used.

As we consider homogeneous media, we choose the
frame of surface integral methods. Integral equations
have been established for perfectly conducting17 and lossy
dielectric'®?? lower media. We successively present the di-
electric (Subsection 2.B) and perfectly conducting (Sub-
section 2.C) cases.

B. Dielectric Case

1. Integral Equations
Let us define {#;}j-9 12 as the total field in each medium
;. The purpose of integral methods is to evaluate the
fields and their first derivatives onto S* and then, by
means of Huygens’s principle, to deduce the scattered
field in each medium.

For r located on the rough surfaces, the fields {¢/;}j-0 1,2
satisfy the following boundary conditions:

lr/IO(r)‘reS+ = ¢1(P)|res+,

dio(r) 1 dy(r)
=— , (2a)
an, resS, P10 an, resS,
lr/ll(r)‘reS_ = lﬂz(l')|res_,
I (r) 1 diy(r)
- , (2b)
an._ reS_ P21 an._ reS_

where pjg=po1=1 in the TE case and pig=e1/eg, po1
=gy/eq in the TM case. The upward normal n, to the sur-
face S, is defined as
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-{x+17Z
n,=-———
V1+ (22)?
where ¢, =d{./ox.

Let us consider three contour paths of integration, Cy,
Cy, and C,, represented in Fig. 1. Applying Green’s theo-
rem under the assumption that the fields ¢; and their nor-
mal derivatives di;/dn. on both interfaces are negligible
at the edges, we obtain four coupled equations. When the
boundary conditions (2) are introduced, these four equa-
tions, linking the incident field ¢;,. and the total fields iy
and ¢; on the rough surfaces S, and S_, become

1 agolr’,r) Fo(r)
5%(1") —:}t ds ¢ho(t) ———+ ds go(r',r)
S, g s Z

n. . +
At B
= lﬂmc(r'), r' e S+a
(3a)
E , a dg1(x’,1) d , ()
- 2%(1‘ )= . s l//o(r)iam + . sg(r’,r) . P10
ot p1oD*
f d ( )ﬁg1(1f",l‘) - )(91//1(1‘)
+S_S‘/f11‘—(9nu -&\r,r .
E F
=0, reS,,
(3b)
ag1(r',x) o)
f ds[%(r)li —gﬂr@r)pr]
s, on., n,
G P10l
r d ag1(r',r) f q . )r?th(r)
+ 51//1(1‘ )— < $ %(r)iﬁn_ + . sgi{r',r o
A- B”
=0, resS._,
(3¢)
1 ( r) d ( )dgz(r”r) f d ( ’ )0¢1(r)
—21/’11' —J[S_ 3%1'7(971_ + N s galr',r P
[on po1D”
=0, reS._.
(3d)

In these expressions, fgds is the principal value integral.
The Green functions of regions (); are expressed by

2
g(r',r)= ZHB”(k,Hr—r’II), (4)

where k& is the wave number in free space and {%; o} de-
note the wave numbers in the inner and lower media.
HE)I)(-) is the zeroth-order Hankel function of the first
kind. The meaning of symbols A to H will be given below.
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2. Discretization by the Method of Moments

We apply the MoM with point matching and pulse basis
functions.'® From boundary conditions (2) and the set of
integral equations (3), we obtain a linear system of the
form Z-X=b, where the unknown vector X is equal to

X,
X1 = {X } : 5)

with X, and X_ containing the unknown fields and their
normal derivatives on the upper and lower surfaces, re-
spectively. They have the following expressions:
o(r}) 9%(1‘;7)1
, (6)
on, on,

X! = {lﬁo(ri) ()

an on_

an(E])  an(ry)
Xt_=l‘/f1(l'f)"'€//1(rz_v) — L 1”}, (7)

where X¢ stands for the transpose of X.
The source term b contains the information about the
incident field:

b,
b4N><1 = b

=|:lﬁznc(r1‘)¢mc(r]+\}) g0 0.0 0--+0 t.

’ —_—

t
bl SCEN(:)
The impedance matrix has the form

zZv CU]

Z4N><4N= |:CL 7L (9)

where ZU, ZL, CU, and CL are square matrices of size
2N X 2N:

- A" B* . A~ B~
Z2N><2N= Ct p10D+ ’ Z2N><2N= C~ pyD- ’

(10)

[0 0 G pH
Cng2N= E F}’ CéNX2N=|:0 0 . (11)

The superscript U stands for “upper,” and L for “lower.”
ZU exactly corresponds to the impedance matrix of a
single-interface problem,16 where the interface considered
is the upper one (S*). Likewise, ZF is the impedance ma-
trix of the single surface S~. Moreover, matrices CY and
CL can be seen as coupling matrices between the two in-
terfaces S* and S~. Actually, according to integral equa-
tion (3b), CU propagates information from the lower inter-
face toward the upper one (S™—S*). The same remark
holds for matrix CL: It is the coupling matrix from the up-
per surface toward the lower one (S*—S7).

A= B*, C*, D% E, F, G, and H are derived by discretiz-
ing Egs. (3) and are given in Appendix A. Each of these 16
blocks of Z has a size of N XN, the four blocks in Eq. (9)
have a size of 2N X 2N, and so the size of Z is 4N X 4N,
with 4(N X N) zero elements contained in the CV and CE
matrices.
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C. Perfectly Conducting Case

When the lower medium is perfectly conducting, in ex-
pression (9) of the impedance matrix Z, ZU is obviously
identical to that in the dielectric case. Differences arise in
ZX, which is reduced to an N XN matrix, and from the
coupling matrices, which are no longer square. For TE po-
larization, we get

0
Ziny=B, Clyy= {F] ) Cluon=[G piHI,
(12)

and for TM polarization, we obtain

0
Ziun=A", Conxn = {E} ) Cluon=[G piHI.
(13)

Impedance matrice Z is of size 3N X3N, and the un-
knowns are [y, dg/dn, ,d¢r/dn_] in the TE case and
Lo, I/ dny, 1] in the TM case.

D. Scattered Field and Bistatic Cross Section

Once the equation Z-X=b is solved for X, we can derive,
using Huygens’s principle,'® the scattered fields Wtico1,2
in the media Q;:

® Jo in the upper medium €, from the values X,
=[4y, i/ In.] on the upper surface S,;

® i in the lower medium o, from X_;

e ¢y in the inner medium ()4, from both X, and X_, by
using the following expression, valid for r’ € O;:

ag1(r*,xr’") o (x™)
() = f ds*| (") ——— — gy ()
+ on n

[ aeey e
- f ds™| )= T =) — |

(14)

Finally, the bistatic cross section (BCS), also known as the
mean differential reflection coefficient, can be derived in
the far field.'®'"

3. PROPAGATION-INSIDE-LAYER
EXPANSION: FAST METHOD FOR A ROUGH
LAYER

Until now, no efficient method has been available to
achieve a fast resolution of the equation Z-X=b, unlike
for the single-interface problem. Hence, a direct inversion
of Z has to be used, with limitation to a maximal number
of samples on each surface, typically around N =800 for a
personal computer (2 GHz processor, 1 Gbit RAM). This
illustrates the particular interest in developing efficient
and fast numerical methods, requiring low memory space,
for the resolution of Z-X=b in the case of a rough layer.
Indeed, our method! takes advantage of the block parti-
tioning of the impedance matrix (9).
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A. Efficient Algorithm

The algorithm is presented here in the general dielectric
case. Let us assume that we already have the inverse ma-
trix Z~1; we can partition it into four blocks:

L [rUo
Z=VW, (15)

where the square matrices T, U, V, and W are of size
2N X 2N and can be expressed24 with the four blocks of Z
given in Eq. (9) as follows:

T=[ZV-CV.(Z) 1. CL T, (16a)
U=-T- -CV.(zZhH1, (16b)
V=-(Z)1t.CL-T, (16¢)

W= (ZL)—I _ (ZL)—l . CL .T. CU . (ZL)_I.
(16d)
From Eq. (15), the unknowns X are given by

X, 5 b, T -b,+U-b_
x ) % \b )" \Vob,+won ) (17)
Equation (17) splits up the 4N X4N linear system into

two smaller 2N X 2N systems, but it is not yet an efficient
enough way to solve the problem.

1. Evaluation of the Field X, on the Upper Surface

With the aim of solving Z-X=Db in an efficient way, we
note that we need only the unknown values X, to compute
the scattered field in the upper medium (), above S*.
Consequently, in Eq. (17), we need only to solve X,
=T:b,+U-b_. And, since b_=0 in Eq. (8), it is equivalent
to solve, by using Eq. (16a),

X,=T-b,=[ZY-CY-(Z)1-CIT ! D,. (18)
The above expression can be cast into the form
X,=[I-(ZY"-CcY-(ZH-C' - (ZY) " b,
=(I-M) " (ZY b, (19)

where a characteristic matrix of the layer appears, which
we name M,:

M, =(ZY)1-cY-(zh)t-CL. (20)

If we define the norm ||-||,, of a complex matrix by its spec-
tral radius, i.e., the highest modulus of its eigenvalues,
we can expand the term (I-M,)~! in Eq. (19), provided
that

”McHsr = ”(ZU)_l : CU : (ZL)_I . CLHsr <1 (21)

in the same way as the scalar expansion 1/(1-a)=1+a
+a?+ad+--- if |a|<1. We will investigate in Subsection
3.D the validity domain of this condition, but we can al-
ready say that it is fulfilled for most configurations met in
the literature.

Hence, when relation (21) is satisfied, expression (19) of

the unknowns on the surface S* can be approximated by
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P P
X = (E M’é) 2V, =2 YY), (22)
p=0 p=0
where
YY=@)" b, YP=M,YZV forp>0.
(23)

According to the expression of M, given in Eq. (20), Eq.
(22) has a clear physical interpretation (Fig. 2): The total
unknowns on the upper interface are the sum of the con-
tributions Y(f) corresponding to successive iterations p. In
the zeroth-order term, (ZV)~! accounts for the local inter-
actions on the upper interface, so Yio) corresponds to the
contribution of the direct reflection on the upper surface,
without entering inside the layer. In the first-order term,
given by Yil)ch-YiO), C’ propagates the resulting upper
field information, Y'”, toward the lower interface, (Z)!
accounts for the local interactions on the lower interface,
and CU repropagates the resulting contribution toward
the upper interface; finally, (ZU)~! updates the field val-
ues on the upper interface. And so on for the subsequent
terms Y(f) for p>1. The total field XErP ) on the upper in-
terface corresponds to the multiple scattering of the field
inside the layer. Furthermore, sum (22) converges to the
exact and rigorous solution if relation (21) is fulfilled, be-
cause of the properties of the series expansion.

Taking into consideration this physical interpretation,
we call our method PILE, for propagation-inside-layer ex-
pansion.

2. Evaluation of the Field X_ on the Lower Surface
The field X_ on the lower surface is computed from Eq.

(17), with b_=0, by using Eqgs. (16¢) and (18):
X_=V-b,=-[(Z)"-C"]-T-b,=-[(Z")"-C"]-X,.
(24)

Equation (24) can also be interpreted with the use of Fig.
2: From solution X,, obtained by exact inversion or itera-
tively (Subsection 3.A.1), CL propagates the information
toward the lower interface, then (Z%)~1 accounts for the
local interactions on this lower interface.

B. Use of Fast Methods Developed for Single Surfaces
The advantage of the PILE method [Eq. (22)] is that the

matrix—vector products (ZY)"1-v and (ZL)!-v (where v is

Local Upward
interactions coupling
S NN
( Z") -1 cv \
) A~
NN @
ct ( ZL -1
Downward Local
coupling interactions
Fig. 2. Physical interpretation of [(ZV)~!.CU.(Zl)!
-Chp- (29,
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a vector) can be calculated by fast numerical methods
that already exist for a single rough interface.

Direct methods such as LU decomposition require
O(N?/3) operations. As N increases, the computing cost
becomes prohibitive. This has led to the development of
iterative schemes that compute the surface unknowns in
several steps. Three of the most extensively used ap-
proaches are the forward/backward (FB) method?> 28
(similar to the method of ordered multiple interactions®),
the banded matrix iterative approach/canonical grid
(BMIA/CAG),233%31  and the fast multipole method
(FMM).?>3* Although any of these methods can be
equally implemented for matrix inversion in the PILE
method, we choose to use the BMIA/CAG because it is
easier to implement than the FMM multilevel method
and is more efficient than the existing version of the FB
method for the dielectric case.?

In the BMIA/CAG method, the interaction between two
points on the surface is split into near (strong) and far
(weak) interactions. Near interactions are computed with
the exact Green’s function. In contrast, far interactions
are computed by a Fourier transform through a Taylor se-
ries expansion of Green’s function upon a flat surface (z
=0). Therefore, the BMIA/CAG method is valid only for
surfaces of up to a moderate roughness. A multilevel ver-
sion of the BMIA/CAG has to be implemented for higher
roughness; an alternative algorithm is the multigrid
method.®

C. Complexity

The zeroth-order term Y'”=(ZV)~1-b, is obtained by ap-
plying a fast method (Subsection 3.B). With the use of the
BMIA/CAG, this step has a complexity of O(2N log 2N),
since (ZY)1 is of size 2N X 2N. The complexity per itera-
tion of the terms Y(f), p>0, is given below, with
v=Y(f_1):

M, -v=(ZY1t.cV.(zH1. Ccl-v .

O(2N?) (a)
—
O(2N log 2N) (b)

0(2N?) (c)

O(2N log 2N) () (25)

Operations (a) and (c) are matrix—vector multiplications:
Their complexity is less than O((2N)?) because the CU
and CL matrices are mid empty. Operations (b) and (d)
are fast iterative inversions, computed with the BMIA/
CAG or with any other fast method. In conclusion, this
method is of order O(4PN?+(1+2P)2N log 2N), where P
is the number of iterations, i.e., the truncation order in
series expansion (22). For N>1, we get O(4PN?). As we
can see from the numerical results, P is generally less
than 10, so this method is much faster than the direct LU
inversion, of order O((4N/3)3). Furthermore, the PILE
method is faster than a conjugate gradient scheme, whose
complexity is O(M;,,,12N?), where Mj,,, is the number of
iterations and 12N? is the number of nonzero coefficients
of the impedance matrix.
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In the same way, for the perfectly conducting case, the
complexity of the PILE method at order P is O(3PN?
+N[(8P+2)log N+2(P+1)log 2]). When N>1, this leads
to a complexity of O(3PN?).

D. Validity Domain

The convergence of the PILE method relies on condition
(21) on M, involving the four submatrices of the imped-
ance matrix of the layer in Eq. (9), which depend on the
parameters of the system: statistics of the interfaces,
mean thickness of the layer, and permittivity of each me-
dium. Nevertheless, it is worth noting that the norm is in-
dependent of the incident angle. We study hereafter the
following configurations: (a) two plane interfaces, (b) one
rough interface above or under a plane interface, and (c)
two rough interfaces. In each case, a typical relative di-
electric permittivity of the layer is chosen, ¢,1=2.5
+0.01¢, as in Refs. 22 and 36-39.

1. Influence of the Layer Thickness: Case (a)

For a relative dielectric permittivity of lower medium (5
chosen as g,9=8, the Green’s function gy in )y varies
faster than the Green’s function g, in free space (). Actu-
ally, the number of sampling points needed in Qg should
be \8=3 times higher than that in free space. As ten sam-
pling points per wavelength are usually taken in free
space, we choose therefore 30 sampling points per wave-
length for each interface, so Ax=0.03\. We plot in Fig. 3
the norm |M,|,, versus the thickness H of the layer, for
several values L/N={6,9,12,15} of the total length of
each interface, for TE (top) and TM (bottom) polariza-
tions. The lower limit value of the thickness, H=0.03}, is
equal to Ax. We note that the norm is higher in TE polar-
ization than in TM polarization. In addition, the norm in-
creases when the thickness decreases, as a consequence of
a higher coupling between the two interfaces. Neverthe-
less, the method converges for both polarizations, for
whatever thickness greater than Ax, for the considered
lengths. In addition, for a given thickness, the norm in-
creases if the length L increases. Considering next the
perfectly conducting case, we plot in Fig. 4 the norm ver-
sus the thickness H, with the same parameters as those
in Fig. 3, except for g,9=i. Results are quite similar for
both polarizations, unlike for the dielectric case. But
above all, it is worth noting that the norm is higher than
that for the dielectric case; this implies that the PILE
method converges more quickly for the dielectric case
than for the perfectly conducting one.

2. Influence of the Roughness: Cases (b) and (c)

Let us consider rough interfaces with both Gaussian
height distribution and correlation. We first study the
case of one rough interface above or under a plane inter-
face [case (b)] for the dielectric case.

We plot in Fig. 5 the norm |M,|, versus the height rms
o, of the rough interface. For each interface, the total
length is L=12)\, the sampling rate is Ax=0.03\, and the
number of samples is N=400; the correlation length is
equal to L,=N. The slope rms is then given by o,
= \Eah/Lc= \s’Eah/ \. The mean thickness is H=1.5\. Other
parameters, such as dielectric constants, are identical to
those in the plane case (Fig. 3). The upper limit for height
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TE polarization, DI case

0.6 T
: o L=154

L=12x

Y

03005 0.1 0203 05 1 2 3 45
H/ A (log scale)

o

TM polarization, DI case

L=152
L=12%

b4

(9.03 0.05 0.1 0203 05 1 2 3 45
H/ & (log scale)

Fig. 3. Norm |M,||,, versus thickness H for the dielectric (DI)
case: TE (top) and TM (bottom) polarizations, two plane surfaces,
Ax=0.03\, £,9=1, £,,=2.5+0.01Z, and &,,=8.

TE polarization, PC case

0.203 05 1 2 345
H/ & (log scale)

(9.03 0.05 0.1

TM polarization, PC case

- L=15%

-~
-
A

0.1

0203 05 1 2 345
H/ A (log scale)

OC{O3 005 01

Fig. 4. Norm ||M,|,. versus thickness H for the perfectly con-
ducting (PC) case: TE (top) and TM (bottom) polarizations, two
plane surfaces, Ax=0.03\, &,9=1, £,,=2.5+0.017, and &,5=ic.
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rms is chosen as 0y, ;,,4,=0.8\=H/5, so that the rough sur-
face does not intercept the plane surface. We can note in
Fig. 5 (i.e., for 0;,<0.3\ and 0, <2 x0.3=0.42) that the
difference between the norm in the case of a single rough
surface, above or under a plane one, and the norm in the
plane case (05,=0) is less than +0.05. In other words, a
moderate roughness does not modify drastically the norm
of the characteristic matrix of the layer.

When both surfaces are rough [case (c)], several cases
arise: Surfaces can be uncorrelated between themselves,
correlated, or identical. Further investigations, not shown
here, point out that the norm is not modified in a signifi-
cant way (same range of +0.05), whatever the correlation
between surfaces and the height rms. This behavior of the
norm is illustrated, for example, in Fig. 6, where we plot
the norm versus oy, for the case of identical or uncorre-
lated rough surfaces. In this example, we choose an iden-
tical height rms for both surfaces, oj,=0}=0;,. Other pa-
rameters are the same as those in Fig. 5 (L,=\, L=12),
Ax=0.03\, N=400, and H=1.5\).

For the perfectly conducting case also, results, not
shown here, confirm that the roughness has a similar low
influence on the norm.

3. Influence of the Total Length L
If we consider moderate roughness up to o5, =0.3\, the
norm of the characteristic matrix is mostly influenced by

0.25
—e— TE : upper rough
+0' TE : lower rough
—A— TM : upper rough ||
0.2 & TM : lower rough

0 0.05 0.1 0.15 0.2 0.25 0.3

Fig. 5. Norm |M,||,. versus height rms o3, for one rough surface
and one plane surface: upper rough (solid curves) or lower rough
(dashed curves), dielectric case for both polarizations, H=1.5\,
L=12\, Ax=0.03\, &,9=1, £,;=2.5+0.01i, and &,,=8.

0.25

—e— TE : identical

~0- TE : uncorrelated
—A— TM :identical |
<A TM : uncorrelated

0 0.65 0.1 0.15 0:2 0.25 0.3

S, /A
Fig. 6. Norm |M,|, versus height rms oy, for both rough sur-
faces: identical surfaces (solid curves) or uncorrelated surfaces
(dashed curves), dielectric case for both polarizations, H=1.5),
L=12\, Ax=0.03\, £,9=1, £,;,=2.5+0.017, and ¢,,=8.
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1.2

P

11 4 DI
1
0.9

0 5 10 15 20 25 30

Fig. 7. Norm |M,|,,. versus total length L for perfectly conduct-
ing and dielectric cases: TE polarization, H=0.3\ and Ax=0.03\
for both plane surfaces.

1.2
—a— PC ; no precond.
11 —&— PC ; precond.
1
0.8
0.8
0.7
£
5 0.6
z
0.5
0.4r
0.3
0.2
0.1

00 10

20 30 40
2

Fig. 8. Influence of preconditioning: norm |M,||,. versus total
length L (squares) and norm |[[(I-M,) }(M,-M,)|,. with =51
(triangles), for the perfectly conducting case and TE polarization
for both plane surfaces.

the total length L of the surfaces and the mean thickness
H of the layer. In Figs. 3 and 4, we plotted the norm ver-
sus the thickness H for a given L; let us consider now
(Fig. 7) the influence of the total length L on the norm for
a given thickness H. We study how the PILE method con-
verges, even for a small thickness (H=0.3\). Figure 7 il-
lustrates results for TE polarization only, the TM case be-
ing very similar. The maximal value L=30\ corresponds
to the maximal size that we can solve by direct inversion
on our computer (N=1000 sampling points for each sur-
face).

Figures 3, 4, and 7 show that the norm is higher for the
perfectly conducting case than for the dielectric case. But
the relevant point is that the increase of the norm is slow-
ing down for increasing values of L. Hence, we can expect
that the norm will be less than unity, i.e., the PILE
method will converge, for L values up to 200\ in the di-
electric case.

E. Preconditioning

A way to improve and, consequently, to accelerate the con-
vergence of the PILE method is to precondition the char-
acteristic matrix of the layer, M., by reducing its norm
(21). Another point is that errors over successive iterates
Y(f) propagate by applying recursively M_; hence, a reduc-
tion of its norm can reduce the final error of the PILE
method.
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In Eq. (19), we intend to expand (I-M,)™! in a series
more quickly convergent than I+MC+M?+M§’+-'-. For
this purpose, let us suppose that a matrix M, exists,
which is close to M, and such that (I-M,)~! is easier to
invert than (I-M,)™!, i.e., with fewer operations. Then

(I-M) ™" =[I-Mp- (M, -M]™"
={(I-Mp)[I-(I-Mp) (M, - My}~
=[I-(I-Mp (M, - My (I-Mp)™.

(26)

The expression [I-(I-Mgy)~'(M.-M,)]~! can be expanded
in a series as in Eq. (22) if

[(X- My)'(M, - M), < 1. (27)

It is interesting to note that an appropriate choice of M,
may lead to

H(I - MO)_I(MC - MO)”sr < ”McHsr <1. (28)

The efficiency of preconditioning relies on the choice of
M,. More precisely, we search for a matrix M, that has
eigenvalues “close” to those of M, and that is easy to in-
vert. Hence, we choose My=(Z§)-CY-(Z5)1-Ck, where
the subscript B stands for the corresponding banded ma-
trices of four matrices of M., given in Egs. (10) and (11).
These banded block matrices have a size of N XN and
equal band width b. Therefore, M, is also a banded ma-
trix, and we can then proceed to the approximate compu-
tation of (I-Mg)~! by incomplete LU matrix
factorization,®® which is a low-cost operation.
Finally, the preconditioned PILE method has a similar
expression to Eq. (22):
P
X{=1 2 [A-My) (M, - Mo)¥ ((I-My)™" - (ZV) - b,.
p=0
(29)

Figure 8 shows a comparison of the norm of the charac-
teristic matrix with and without preconditioning. We con-
sider TE polarization, both plane surfaces, and a perfectly
conducting lower medium. The nonpreconditioned results
are those of Fig. 7. For the preconditioning, we choose a
bandwidth of b=51 coefficients, according to studies car-
ried out in Ref. 19. Such a choice for b induces at the same
time a low norm of the preconditioned matrix and a low
bandwidth, i.e., a low-cost LUINC decomposition. We can
note that preconditioning appreciably reduces the norm
for this configuration: For instance, with a total length
L=30\, HMCHsr:0~92 whereas ||(I_M0)_1(MC_MO)”sr
=0.57.

4. VALIDATION OF THE PROPAGATION-
INSIDE-LAYER EXPANSION METHOD

The PILE method is compared with two results from the
literature.?%3°

A. Sand Layer on a Granite Surface

As a first example, we compare results obtained by the
PILE method and by another rigorous integral method,?
which was first applied to a single dielectric rough
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Fig. 9. rms error for different orders P of the PILE method. The
same parameters are used as those of Fig. 9 in Ref. 22: g,4=1,
£,1=2.5+0.017, and &,9=8. Parameters of rough surfaces are L
=70\, Ax=0.03\, 03,=0.01\, 0,=0.014, 0,=0.35\, 0,=0.49, and
H=1.5\, and TE polarization is used. Parameters of the Thorsos
tapered incident wave are 6,=30° and g=L/6=11.7\.
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Fig. 10. Bistatic cross section in TE polarization. The dashed
curve is the result of Fig. 9 in Ref. 22, and the solid curve repre-
sents the PILE method at order 5.

surface.’’ For a stack of two rough surfaces, both the
PILE method and this alternative integral method allow
one to deal with a reduced number of unknowns (2N in-
stead of 4N for the dielectric case and 3N for the perfectly
conducting case). However, the main difference is that the
impedance matrix of Ref. 22 is arranged in a compact
form, inducing a more complicated formulation of the ker-
nel of the operator. Hence, the fill-in of the impedance ma-
trix is very time-consuming, and, furthermore, the com-
plicated formulation makes it more difficult to develop
fast methods of resolution. In addition, Saillard and
Toso?? use the beam simulation method,41 with incident
Gaussian waves, whereas we use the Thorsos tapered
waves.?!

First we study the configuration (Fig. 9 of Ref. 22) mod-
eling a flat-top sand layer superimposed on a rough gran-
ite surface. This configuration deals with two surfaces of
very different roughnesses: The upper, air—sand interface
fulfills the conditions of application of the small-
perturbation method (height rms o} =0.01\, slope rms
U;=0.014), whereas the lower, sand—granite interface ful-
fills the Kirchhoff approximation (o,=0.35X\, cr;=0.49).
The two surfaces are assumed to be uncorrelated between
themselves.

We choose a Thorsos incident tapered wave with a ta-
pering parameter g=L/6=11.7\, where the total length
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is L=70\. The other parameters are incident angle 6;
=30°, &,0=1, £,1,=2.5+0.017, &,5=8, mean thickness H
=1.5\, and N=2300 sampling points for each interface.
The scattering patterns are averaged over 300 realiza-
tions by means of a Monte Carlo procedure.

To quantify the convergence of the PILE method for
this configuration, we realize an exact LU inversion of the
impedance matrix with expressions (16). Next we com-
pute the bistatic cross section (BCS) rms error of the
PILE method at order P versus the exact inversion. In
Fig. 9 of this paper, this rms error decreases rapidly as
the order of the PILE method increases: A rms error of 1%
is obtained at order 2, and 0.01% is reached at order 5. In
Fig. 10, we plot the BCS in a linear scale for TE polariza-
tion; reference results are those given in Ref. 22, and the
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Fig. 11. Bistatic cross section in TE (top) and TM (bottom) po-

larizations. The dashed curves are the result of Fig. 11 in Ref. 22,

and the solid curves represent the PILE method at order 5.
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Fig. 12. Incoherent bistatic cross section in TE polarization. The
dashed curve is the result of Fig. 3 in Ref. 39, and the solid curve
represents the PILE method at order 15.
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Fig. 13. Comparison of the modulus of the field inside the layer for different orders of the PILE method. The parameters are the same

as those in Fig. 12.

PILE results are computed up to order 5. According to
Fig. 10, results of both rigorous integral methods are in
good agreement.

Second, we study the configuration of Fig. 11 of Ref. 22.
The parameters are the same as those in Fig. 10, except
that 0,=0° and the upper surface is now identical to the
lower one (07,=0.35\, 07,=0.49). Results are plotted in Fig.
11 of this paper for both polarizations; the BCSs are in
good agreement, except for the normal scattering direc-
tion. These differences can be explained by the different
choices of incident beams.

B. Layer with Rough Lower Interface of the
West-O’Donnell Spectrum

We now focus on the configuration in Fig. 3 of Ref. 39. The
incident Thorsos beam (A=633 nm, g=L/10=16\, with L
=160\) is normally incident (6;,=0°). The upper surface is
a plane, whereas the lower one is characterized by a
Gaussian surface height distribution (07,=30 nm
~0.047\) and by a West—O’Donnell power spectrum,?’ de-
fined by the parameters k;,,=0.82k, and k,,=1.97k,,
where k( is the wave number in air. The relative dielectric
permittivity of the layer is ¢,1=2.69+0.01i, and the lower
medium is assumed to be perfectly conducting. The mean
thickness of the layer is H=500 nm=0.79\.

To derive the scattered field, Simonsen and
Maradudin® use an asymptotic model, based on reduced
Rayleigh equations, and they average the incoherent BCS
with a Monte Carlo procedure.

Figure 12 shows the incoherent BCS provided by this
asymptotic method, denoted as the reference method, and
by our rigorous PILE method at order 15. We plot here
only results for TE polarization, the TM ones being simi-
lar. We apply the MoM with N=3200 sampling points, so
we deal with 9600 unknowns. Our results (solid curve),
averaged over 300 surface realizations, are in very good
agreement with reference ones (dashed curve), resulting
from 3000 realizations.

Some physical comments can be made about the inco-
herent BCS. First, as the lower surface is of the West—
O’Donnell kind, single-scattering processes contribute to
the BCS only in directions 6; such that [6;|> 6 ,;,, Wwhere
kg Sin O in| = k10 We find®® that 05 min=55.1°. This phe-
nomenon produces an abrupt increase of the BCS for

angles |6,|>55° in Fig. 12. Second, in the absence of
roughness and absorption, the layer can support guided
waves: In TE polarization, only two modes exist, with
wave numbers g,=1.24k, and go=1.55k(.>° The beat
yielded by these two close guided modes creates®® two sat-
ellite peaks in the BCS for angles 6 , such as sin 6 ,
=—sin 6;+(1/ko)(q1-q2). The theoretical value 6,
=+17.7° is in good agreement with observations from
Fig. 12.

It is interesting to note that parameters &;,, and k&, of
the West—O’Donnell lower surface satisfy k;,,<q;1<qo
<k, and, therefore, permit a strong excitation of guided
modes inside the layer.

Furthermore, the PILE method permits the enlighten-
ment of physical phenomena inside the layer. From solu-
tions X' and X'¥) calculated on both surfaces [Eqgs. (14),
(22), and (24)], we can calculate the scattered field inside
the layer (Subsection 2.D). Figure 13 presents the modu-
lus of this scattered field, obtained from the solutions at
orders P={3,7,15}. This figure confirms that the different
orders of the PILE method take into account the succes-
sive multiple reflections inside the layer. The beat yielded
by the two close guided modes, with wave numbers q; and
q9, is clearly seen, particularly in the solution of order 15.
These guided modes induce a slow decay of the field and,
consequently, a slower convergence of the PILE method
(15 orders) for this later configuration than in Subsection
4.A (only 5 orders). Nevertheless, if we apply the precon-
ditioned formulation given by Eq. (29), the number of it-
erations required to achieve the same precision drops
from 15 to 8.

C. CPU Requirements

We used N=2300 sampling points (9200 unknowns) for
the configuration of Figs. 10 and 11 and N=3200 sam-
pling points (9600 unknowns) for Fig. 12. The size of the
impedance matrix Z of the layer is then about 1.5 Gbits.
It is worth noting that, even for such a high number of
unknowns, calculations are tractable with the PILE
method on a standard personal computer (2 GHz proces-
sor, 1 Gbit RAM) with MATLAB; the typical CPU time for
this number of samples is about

e 8 min per realization at order 5 (Figs. 10 and 11),

e 30 min per realization at order 15 (Fig. 12).
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Moreover, we cannot provide comparisons with the LU
method of inversion, because it is impossible to carry out
calculations with such a big impedance matrix.

5. CONCLUSION

In this paper, we have considered integral methods to
solve the problem of electromagnetic scattering by one-
dimensional rough layers. The integral equations and the
corresponding linear system have been introduced, as
well as physical insights into the blocks of the impedance
matrix. Although these equations have been known for al-
most 15 years,'” no efficient method of resolution had
been developed until now.

We have presented herein such a fast method to study
the electromagnetic scattering by a one-dimensional
rough layer; to our knowledge, the propagation-inside-
layer expansion (PILE) method is the first efficient
method devoted to this configuration. Its main interest is
that it is rigorous, with a simple formulation and with a
straightforward physical interpretation. Actually, this
last property relies on the fact that each block of the im-
pedance matrix is linked to a particular and quasi-
independent physical process occurring during the
multiple-scattering process inside the layer: Local scatter-
ing on each interface and both upward and downward
coupling. By the way, this ensures that, in its validity do-
main, the method converges fast (commonly in 5-10 itera-
tions), even without preconditioning.

Furthermore, the PILE method allows one to use any
fast method developed for a single interface. The BMIA/
CAG method has been implemented in the present case,
but any other method, such as the FB method or FMM,
could be used instead.

Another advantage is that it is the first method able to
deal with problems with a huge number of unknowns, as
for instance those involving high incident angles or
guided waves. Finally, the quite large validity domain of
the PILE method makes it able to handle most of the con-
figurations studied in the literature and allows us to
study new ones, in particular without restrictions to
small roughness. The only limitation is the low conver-
gence of the method when dealing with very thin layers.

Further investigations could be directed toward imple-
menting the PILE method to the case of a target located
below a rough surface42; indeed, the equations in this case
are very similar to those of the rough layer case.

APPENDIX A: IMPEDANCE MATRIX
COEFFICIENTS

For the dielectric case, the matrices A*, B, C*, D*, E, F,
G, and H of the impedance matrix Z have the following
expressions:

iAxk, H‘l“(ko\lr,ﬁ s )

4 ey = x|
A:nn _ < X{("/(xn)(xn _xm) - [r(xn) - ?(xm)]} i (Al)
form #n
1 A {M(xp)
s form=n
2 4ml+ (L (x,,))?
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+le (1) + +
')’n_HO (kO”rn - rm”)

form #n
. 4
By = 1Ax 2 e"koAx ’
vi— ) 1+z—log 2 2% Y form=n
(A2)
iAxk; H (kqllry, - x5,
4 [y = x|
. XL () (e, = %) = [£7 () = £F () I}
Chn =9
form #n
1 Ax  M(x,) .
2T A ()P e
(A3)
1Ax 2
VZTHB (G ) form #n
+
Do = iAx ) 2 . Vkle . ’
_ orm=n
Vo 4 + l og 2 % Yn
(A4)
iAxky HY) (el — 7 )
E,.=+ —
4 ||rn - rm”
X{é'_,(xn)(xn - xm) - [é'_(xn) - ?(xm)]} v m,n,
(A5)
F,,=- <1>(k1||r -r))  Vm,n, (A6)
iAxky HYY Ry, - v, ])
Gmn =+ N _
4 ||rn, - rm”
X{r/(xn)(xn - xm) - |:§+(xn) - g_(xm)]} v m,n,
(A7)
_ +iA_x (1) - _ et
Hmn - 771 4 H() (k1||rm rn”) v m,n, (AS)
Where ”rriL - ri;” = \”’(xn _xm)2 - ((_F(xn) - é’i(xm))2’

yi=y1+({* (x,))?, and y=0.5772 is Euler’s constant.

A, B, C, and D™ are very similar to A*, B*, C*, and
D+, respectively, where r{ nl is replaced by r{m np vi by
Yo £ by (7, ko by k1, and k1 by k. These expressions can

also be used in the perfectly conducting case (Subsection
2.0).
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